skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmed, Sharif"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding when gravel moves in river beds is essential for a range of different applications but is still surprisingly hard to predict. Here we consider how our ability to predict critical shear stress (τc) is being improved by recent advances in two areas: (1) identifying the onset of bedload transport; and (2) quantifying grain‐scale gravel bed structure. This paper addresses these areas through both an in‐depth review and a comparison of new datasets of gravel structure collected using three different methods. We focus on advances in these two areas because of the need to understand how the conditions for sediment entrainment vary spatially and temporally, and because spatial and temporal changes in grain‐scale structure are likely to be a major driver of changes inτc. We use data collected from a small gravel‐bed stream using direct field‐based measurements, terrestrial laser scanning (TLS) and computed tomography (CT) scanning, which is the first time that these methods have been directly compared. Using each method, we measure structure‐relevant metrics including grain size distribution, grain protrusion and fine matrix content. We find that all three methods produce consistent measures of grain size, but that there is less agreement between measurements of grain protrusion and fine matrix content. 
    more » « less
  2. This paper presents the prospect of 3D printing technology to generate artificial soil analogs with the goal of modeling the mechanical behavior of coarse-grained soils. 3D X-ray CT scans of natural angular and rounded sand particles have been used to generate angular and rounded particle analogs using the polyjet 3D printing technology. A comparison of the scanned natural sand particles and the 3D printed particles demonstrates the ability of 3D printing technology to reproduce the shape and size of the sand particles. The results of oedometer compression tests on the angular and rounded natural and 3D printed particles are used to demonstrate the effect of constituent material (i.e. quartz versus polymer) stiffness on the measured soil compressibility and investigate the normalization of the response using the Hertz contact theory. The results provided in this paper also include comparison of the small-strain moduli–mean effective stress relationship obtained for the natural and 3D printed soils. This paper illustrates the potential use of 3D printed analogs to model the mechanical behavior of coarse-grained soils and identifies future research needs for implementation of the proposed normalization scheme within the critical state soil mechanics framework. 
    more » « less